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Table 1

Values of vg

Values of v,

p p=90° ¢ =925° 6 =095° 0=100° 6 =120° 6 =180° 6 =90° @ = 95° ¢ = 100° ¢ = 120° ¢ = 180°
1.0 0 0 0 0 0 0 0.56419 0.56419 0.56419 0.56419 0.56419
1.01 0.09562 0.08240 0.07141 0.05238 0.01869 0 0.64339 0.64348 R R 0.64354
1.04 0.26532 0.23165 0.20012 0.14678 0.05201 0 0.71916 0.71965 . . 0.72000
1.06 0.34714 0.30448 0.26365 0.19339 0.06821 0 0.75131  0.75208 . R 0.75262
1.08 0.41497 0.36569 0.31741 0.23284 0.08176 0 0.77729  0.77831 S o 0.77903
1.10 0.47254 0.41841 0.36406 0.26706 0.09336 0 0.79923 0.80049 0.80110 0.80137 0.80137
1.20 0.66518 0.60347 0.53166 0.38971 0.13344 0 0.87606 0.87826 0.87930 0.87970 0.87970
1.5 0.85138 0.83190 0.76002 0.54871 0.17866 0 0.98471 0.98808 0.98961 0.98994 0.98994
2.0 0.82976 0.91637 0.87908 0.59393 0.18470 0 1.05279 1.05668 1.05755 1.05764 1.05764
3.0 0.66075 0.92772 0.90951 0.51801 0.15828 0 1.09611  1.09888  1.09929 1.09930
4.2 0.51094 0.94586 0.82421 0.42097 0.12857 0 1.11215 1.11408 1.11414 1.11414
5.0 0.44154 0.96712 0.74354 0.37165 0.11351 0 1.11699 1.11848 1.11849 1.11849
7.0 0.32808 0.98817 0.57581 0.28572 0.08726 0 1.12259  1.12346 . 1.12346

10.0 0.23604 0.84005 0.42575 0.21124 0.06452 0 1.12555  1.12601 1.12601
velocity, the gas flowing out directly at the surface, a Max- References

wellian distribution. A true Maxwellian distribution is iso-
tropic and yields no net outward flux; rather, a Maxwellian
distribution times the step function 8 = 1 for directions out
of the surface and S = 0 for directions into the surface is ap-
propriate. However, the normalization of such a distribution
must be twice that of a Maxwellian distribution in order for
the integral over all directions to equal the local number den-
sity. = This factor of 2 in the normalization was not used in
deriving the approximate boundary condition and hence not
used in deriving Eq. (2). If it had been, the right-hand side
of Eq. (2) would have been half as big.

The further differences between Eqs. (2) and (4) enter
from approximations to the flux equality condition which
were made in deriving the boundary condition for Eq. (2),
essentially ignoring the dependance of the mathematical ex-
pression with position on the surface. The approximation
to the Wang Chang distribution used to derive Eq. (3)
amounted to using a more accurate approximation to the
flux equality condition.

The mean velocity 7 of the reflected particles at any point
can be found by averaging 7 using the Wang Chang distribu-
tion function. Using the same approximation to the dis-
tribution function, closed-form analytic results for the
tangential and radial components v and v, are, respectively,
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The details of these integrations are given in Appendix B
of Ref. 5, whereas numerical results for V' = 5 are given here
in Table 1. They indicate insensitivity of v, to angle and in
general indicate a monotone build-up of radial velocity with
radial distance. Tangential velocity as a function of p builds
up as would be expected from zero and then drops off. Fur-
ther vp changes rapidly with decreasing 8 near § = 90°, the
radial position of the maximum dropping rapidly.
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Interactions between a Hypersonic
Wake and a Following Hypersonic
Projectile

R. E. SvaTTeEry,* W. G. Cray,T anDp R. R. STEVENS]
Lincoln Laboratory,§ Massachusetts Institute
of Technology, Lexington, Mass.

URING a recent series of experiments at the Lincoln
Laboratory Re-entry Simulating Range, it was dis-
covered that the presence of the sabot in the wake of a spin-
stabilized cone radically altered the flow around the cone.
The base section of the sabot is partially split, so that nor-
mally it breaks upon leaving the gun muzzle, and the pieces
are separated from the cone’s flight path by centrifugal
forces. When the sabot base fails to split, as sometimes
occurs, it continues downrange along the same path as the
cone, slowly falling behind it because of the differences in
drag.
In Fig. 1 is shown a schlieren photograph of a 25° included-
angle cone in normal, zero attitude flight at 5500 fps through
25 mm Hg of dry air. The techniques of stabilized flight,

Received January 3, 1963.

* Assistant Leader, Plasma Physics Group.

1 Staff Member, Plasma Physics Group.

I Project Technician, Plasma Physics Group.

§ Operated with support from the U. S. Advanced Research
Projects Agency.



APRIL 1963

Fig. 1  25° included angle cone in normal flight (5500 fps,
25 am Hg air pressure)

Fig. 2 25° included angle cone followed by a piece of sabot
(5500 fps, 25 mm Ilig air pressure)

schlieren photography, and assurance of constant attitude
have been described elsewhere.! Note that the character-
istics of the flow are as expected. There are bow and second-
ary shocks, and the laminar trail is much narrower than the
base of the cone. There is a distinct necking of the flow,
causing the secondary shock, and, further downstream, there
is a distinet laminar-to-turbulent transition. Hundreds of
pictures like this have been taken under various flight condi-
tions.

Figure 2 shows an identical cone fired under precisely the
same conditions, but with the base of the sabot located in
the wake of the cone and some distance behind it. Note
that the flow behind the cone is completely different in this
case. There is no secondary shock. There is no necking of
the flow. The trail is still laminar but of approximately the
diameter of the base. No hint of laminar to turbulent
transition exists ahead of the sabot. Examination of the
film density of the schlieren photograph indicates that, as in
Fig. 1, the laminar trail is a region of much lower gas density
than the surrounding inviscid region (an expected tempera-
ture and pressure phenomenon in the case of the normal flow
this close to the body). Obviously, the cone and sabot have
interacted via the wake of the cone. This is nof an isolated
phenomenon; the results are completely reproducible.

The first and obvious lesson from these two photographs is
that considerable care must be taken by researchers in bal-
listic ranges to insure that sabots separate properly and that
the field of view of their optics is sufficiently wide so that
the possibility of the interaction between two or more pro-
jectiles is eliminated. Otherwise, the flow characteristics
photographed are not necessarily those of the body under
study.

1 Slattery, R. E. and Clay, W. G., “The turbulent wake of
hypersonic bodies,”” ARS Preprint 2673-62 (1962).
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Figure 2 is interesting in and for itself. The sabot, travel-
ing in the wake of the cone, has made its presence felt up-
stream and has changed the otherwise normal flow about the
cone. The simplest interpretation is that the sabot is im-
mersed in a fluid with respect to which it has a subsonic
velocity, despite its high velocity in the laboratory system.
Under these conditions it can propagate energy back up the
cone’s trail, countercurrent to the flow in the trail (in the
body-centered system), and alter the characteristic flow about
the cone. This comes about, probably, for two reasons: 1)
the flow in the wake of the cone is quite high speed in the
observer system and is an appreciable fraction of the velocity
of the sabot; and 2) the flow is hot, which tends to raise the
sound speed.

Of course, having stated that energy is propagated up the
trail by no means describes the details of the processes that
alter the normal flow.

Invariant Components of Motion in
Inverse-Square Force Fields

FreEDpERICK V. PoHLE*
Adelphi College, Garden City, N. Y.

RONIN and Schwartz! have drawn attention to a useful,

but little known, property of motion in a two-body
motion in an inverse-square force field, namely, that the
velocity vector can be resolved at any point into two com-
ponents of constant magnitude, one remaining normal to the
initial line and the other remaining normal to the radius
vector. This property of the motion also has been proved
in the well-known text on dynamics by Whittaker.2 The
present note is a brief outline of work?® published in 1959
which used the same invariant properties and applied the
method to the problem of small drag and low thrust.

Kepler’s second law states that the radius vector sweeps
out equal areas in equal times; the quantity r2(dd/df) =
h is a constant of the motion and is, of course, a first integral
of the equations of motion. Here ¢ is the true anomaly and
his a constant.

The existence of an invariant such as »2(dd/dt) immediately
suggests the problem of finding additional invariants, and
this search is successful if the invariant components just
noted are used. If »; denotes the component normal to the
initial line and v, denotes the component normal to the radius
vector (V, and V;, respectively, in Fig. 2 of Ref. 1), then it
also is of interest to note that »;/v. is the eccentricity of the
orbit. The square of the speed then is given by

v = 1?4 1% + 20w cos(P)

If, further, o is the semimajor axis of the elliptical orbit, e
the eccentricity of the orbit, and R the radius of the earth,
the three invariants of the motion can be written as

x = p(dd/dt) — (dp/dt) cot(d) = (B/L)\?
y = (dp/dt)/ sin(®) = e(R/L)\1? M
z = p¥dd/dt) = (L/R)V?

In Egs. (1), p = r/R and L = a(1 — ¢%; for convenience,
the area integral is denoted by 2, and v, and v, now are denoted
by y and =z, respectively. The quantities  and z are de-
pendent in the classical case; in the following, a,y, and 2
will be used as new dependent variables, with & as the new
independent wvariable. The original dependent variables
were 7 and ¢ as functions of the time ¢.
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